The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice guidelines and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice guidelines and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice guideline and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review, requiring the approval of the Commission on Quality and Safety as well as the ACR Board of Chancellors, the ACR Council Steering Committee, and the ACR Council. The practice guidelines and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline and technical standard by those entities not providing these services is not authorized.

ACR PRACTICE GUIDELINE FOR THE PERFORMANCE OF PELVIC ULTRASOUND IN FEMALES

PREAMBLE

These guidelines are an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology cautions against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, an approach that differs from the guidelines, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations on available resources or advances in knowledge or technology subsequent to publication of the guidelines. However, a practitioner who employs an approach substantially different from these guidelines is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. It should be recognized; therefore, that adherence to these guidelines will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.

I. INTRODUCTION

The clinical aspects of this guideline (Introduction, Specifications of the Examination, and Equipment Specifications) were developed collaboratively by the American College of Radiology (ACR), the American Institute of Ultrasound in Medicine (AIUM), and the American College of Obstetricians and Gynecologists (ACOG). Recommendations for physician requirements, documentation, and quality control vary among these organizations and are addressed by each separately.

This guideline has been developed to assist physicians performing sonographic studies of the female pelvis. Ultrasound of the female pelvis should be performed only when there is a valid medical reason, and the lowest possible ultrasonic exposure settings should be used to gain the necessary diagnostic information. In some cases, additional or specialized examinations may be necessary.
While it is not possible to detect every abnormality, adherence to the following guideline will maximize the probability of detecting most of the abnormalities that occur.

II. INDICATIONS

Indications for pelvic sonography include, but are not limited to:

1. Pelvic pain.
2. Dysmenorrhea (painful menses).
3. Menorrhagia (excessive menstrual bleeding).
4. Metrorrhagia (irregular uterine bleeding).
5. Menometrorrhagia (excessive bleeding irregularly).
6. Follow-up of previously detected abnormality (e.g., hemorrhagic cyst).
7. Evaluation and/or monitoring of infertile patients.
8. Delayed menses or precocious puberty.
10. Abnormal pelvic examination.
11. Further characterization of a pelvic abnormality noted on another imaging study (e.g., CT or MR).
13. Excessive bleeding, pain, or fever after pelvic surgery or delivery.
14. Localization of intrauterine contraceptive device.
15. Screening for malignancy in patients with an increased risk.

III. QUALIFICATIONS OF PERSONNEL

See the ACR Practice Guideline for Performing and Interpreting Diagnostic Ultrasound Examinations.

IV. SPECIFICATIONS OF THE EXAMINATION

The following guideline describes the examination to be performed for each organ and anatomic region in the female pelvis. All relevant structures should be identified by the transabdominal or transvaginal approach. In many cases, both will be needed. A transrectal or transperineal approach is useful in patients who cannot tolerate a vaginal probe (e.g., virgins, postmenopausal women).

A. General Pelvic Preparation

For a pelvic sonogram performed transabdominally the patient’s urinary bladder should, in general, be distended adequately to displace the small bowel and its contained gas from the field of view. Occasionally, overdistention of the bladder may compromise evaluation. When this occurs, imaging may be repeated after the patient partially empties the bladder.

For a transvaginal sonogram, the urinary bladder is preferably empty. The patient, the sonographer, or the physician may introduce the vaginal transducer, preferably under real-time monitoring. When possible, a female member of the physician or hospital’s staff should be present as a chaperone in the examining room if a male is performing the examination.

B. Uterus

The vagina and uterus provide anatomic landmarks that can be utilized as reference points for the remaining normal and abnormal pelvic structures. In evaluating the uterus, the following should be documented: a) the uterine size, shape, and orientation; b) the endometrium; c) the myometrium; and d) the cervix. The vagina may be imaged as a landmark for the cervix and lower uterine segment.

Uterine length is evaluated in long axis from the fundus to the cervix (the external os, if it can be identified). The depth of the uterus (anteroposterior dimension) is measured in the same long-axis view from its anterior to posterior walls, perpendicular to the length. The width is measured from the transaxial or coronal view. If volume measurements of the uterine corpus are performed, the cervical component should be excluded from the uterine measurement.

Abnormalities of the uterus should be documented. The endometrium should be analyzed for thickness, focal abnormality, and the presence of fluid or mass in the endometrial cavity. Assessment of the endometrium should allow for variations expected with phases of the menstrual cycle and with hormonal supplementation. If the endometrial stripe is difficult to image or ill-defined, a comment should be added to the report. The myometrium and cervix may be evaluated for contour changes, echogenicity, and masses. Masses, if identified, should be measured in at least two dimensions and their locations recorded.

C. Adnexa (Ovaries and Fallopian Tubes)

When evaluating the adnexa, an attempt should be made to identify the ovaries first since they can serve as a major point of reference for assessing the presence of adnexal pathology. The ovaries should be measured, and ovarian abnormalities should be documented. Ovarian size can be determined by measuring the ovary in three dimensions (width, length, and depth), on views obtained in two orthogonal planes. It is recognized that the ovaries may not be identifiable in some women. This occurs most frequently after menopause or in patients with a large leiomyomatous uterus.
The normal fallopian tubes are not commonly identified. This region should be surveyed for abnormalities, particularly dilated tubular structures.

If an adnexal mass is noted, its relationship to the ovaries and uterus should be documented. Its size, echogenicity, and internal characteristics (cystic, solid, or complex) should be determined. Doppler or color Doppler ultrasound may be useful in select cases to identify the vascular nature of pelvic structures.

D. Cul-De-Sac

The cul-de-sac and bowel posterior to the uterus may not be clearly defined. This area should be evaluated for the presence of free fluid or a mass. If a mass is detected, its size, position, shape, echogenicity, and internal characteristics (cystic, solid, or complex), and relationship to the ovaries and uterus should be documented. Differentiation of normal loops of bowel from a mass may be difficult if only a transabdominal examination is performed. A transvaginal examination may be helpful to distinguish a suspected mass from fluid and feces within the normal rectosigmoid.

V. DOCUMENTATION

Adequate documentation is essential for high-quality patient care. A permanent record of the sonographic examination and its interpretation should be included in the medical record. Images of all appropriate areas, both normal and abnormal, should be recorded in an image or storage format. Variations from normal size should be accompanied by measurements. Images are to be appropriately labeled with the examination date, facility name, patient identification, image orientation, and, whenever possible, the organ or area imaged. Relevant history for each patient should include obstetric history and/or relevant menopausal history. Retention of the permanent record of the sonographic examination should be consistent with both clinical need and the relevant legal and local healthcare facility requirements.

Reporting should be in accordance with the ACR Practice Guideline for Communication: Diagnostic Radiology.

VI. EQUIPMENT SPECIFICATIONS

The sonographic examination of the female pelvis should be conducted with a real-time scanner, preferably using sector, curved linear, or endovaginal transducers. The transducer or scanner should be adjusted to operate at the highest clinically appropriate frequency, realizing that there is a trade-off between resolution and beam penetration. With modern equipment, studies performed from the anterior abdominal wall can usually use frequencies of 3.5 MHz or higher, while scans performed from the vagina should use frequencies of 5 MHz or higher.

VII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION CONCERNS

All probes should be cleaned after use. Vaginal probes should be covered by a protective sheath prior to insertion. Following the examination, the sheath should be disposed of and the probe cleaned in an antimicrobial solution. The type of solution and amount of time for cleaning depend on manufacturer and infectious disease recommendations.

Policies and procedures related to quality, patient education, infection control, and safety, should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education Concerns appearing elsewhere in the ACR Practice Guidelines and Technical Standards book.

Equipment performance monitoring should be in accordance with the ACR Technical Standard for Diagnostic Medical Physics Performance Monitoring of Real Time Ultrasound Equipment.

ACKNOWLEDGEMENTS

This guideline was revised according to the process described in the ACR Practice Guidelines and Technical Standards book by the Guidelines and Standards Committee of the Ultrasound Commission in collaboration with the AIUM and ACOG.

Collaborative Subcommittee

ACR
Mindy M. Horrow, MD, Chair
Ulrike M. Hamper, MD
Catherine W. Piccoli, MD

AIUM
Arthur C. Fleischer, MD
Steven R. Goldstein, MD
Barbara S. Hertzberg, MD

ACOG
Daniel M. Breitkopf, MD
Fred Frigoletto, MD
John Seeds, MD

ACR Guidelines and Standards Committee
Edward G. Grant, MD, Chair
Lori L. Barr, MD
Raymond E. Bertino, MD
REFERENCES